UNIT G484	Module 3	4.3 .4	I
- Candidates should be able to :			
- State Boyle's law.			
- Select and apply :	$\frac{\mathrm{pV}}{\mathrm{T}}=$ constant		

- State the basic assumptions of the kinetic theory of gases.
- State that 1 mole of any substance contains 6.02×10^{23} particles and that $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ is the Avogadro constant, N_{A}.
- Select and solve problems using the Ideal gas equation expressed as :

$$
\mathrm{pV}=n \mathrm{RT} \text { and } \mathrm{pV}=\mathrm{NkT}
$$

Where N is the number of atoms and n is the number of moles.

- Explain that the mean translational kinetic energy of an atom of an ideal gas is directly proportional to the absolute gas temperature in Kelvin.
- Select and apply the equation :

$$
E=3 / 2 \mathrm{kT}
$$

For the mean translational kinetic energy of atoms.

THE GAS LAWS

BOYLE'S LAW

This law, first discovered by Robert Boyle in 1662, relates the PRESSURE and VOLUME of a gas at CONSTANT TEMPERATURE and states that :

The PRESSURE (p) of a fixed mass of gas at constant temperature is inversely proportional to its VOLUME (V).

Stated mathematically :
$\mathrm{p} a \operatorname{l/V}$
OR
$\mathrm{pV}=$ constant

- \quad This equation can be used to calculate pressure or volume changes whenever a fixed mass of gas is either compressed into a smaller volume (at higher pressure) or allowed to expand into a larger volume (by reducing the pressure), providing the temperature remains the same throughout the change.
- So if $\left(p_{1}\right)$ and $\left(V_{1}\right)$ are the pressure and volume of a fixed mass of gas at some initial stage and $\left(p_{2}\right)$ and $\left(V_{2}\right)$ are the values after expansion or compression at constant temperature. Then:

```
p}\mp@subsup{p}{1}{}\mp@subsup{V}{1}{}=\mp@subsup{p}{2}{}\mp@subsup{V}{2}{
```

UNIT G484	Module 2	4.3 .4	Ideal Gases
- A graphical representation of the relation between the pressure (p) and the volume (V) of a fixed mass of gas at constant temperature is shown below.			
	 (a) p / V graph	(b)	

PRACTICAL INVESTIGATION OF BOYLE'S LAW

- The apparatus shown above may be used to investigate the relation between the pressure and volume of a fixed mass of gas at constant temperature.
- A long glass tube which is closed at one end and mounted against a volume scale, contains the fixed mass of air under test. The pressure on the air column can be varied using a foot pump which forces oil from the reservoir up the tube and so compresses the air above it. The pressure gauge measures the pressure in pascal and the volume of the
- Plotting pV against p Yields horizontal lines for each different temperature as shown in the diagram opposite.
- When p is plotted against V, a curve called a rectangular hyperbola is obtained and when p is plotted against 1/V, the result is a straightline graph.

By investigating a fixed mass of gas at different temperatures, a series of graphs is obtained. Each of the curves or lines is called an ISOTHERMAL (since the plotted values are all for the same temperature).

(c) $p v / p$ graph
air column is read directly from the scale beneath the tube.

- The pump is first used to compress the air to its smallest possible volume and the tap is closed. In order to ensure that the oil level has stabilised and that the air is at room temperature, the pressure (p) and volume (V) readings are not taken for a couple of minutes
The apparatus is then slowly vented by opening the tap slightly and then closing it again. Once again the corresponding pressure and volume readings are taken after a short time has elapsed. This process is repeated several times so as to obtain a set of corresponding p and V values.

RESULTS

PRESSURE, $\mathrm{p} / \times 10^{5} \mathrm{~Pa}$	VOLUME, $\mathrm{V} / \mathrm{cm}^{3}$	$1 / \mathrm{V} / \mathrm{cm}^{-3}$	$\mathrm{pV} / \mathrm{Nm}$

CALCULATIONS AND ANALYSIS

- Plot a graph of p against $1 / \mathrm{V}$. Is it a best-fit straight line? If so what does this tell you about the relationship between p and $1 / \mathrm{V}$?
- Convert the volume readings to m^{3} by multiplying by 10^{-6} and then calculate the product pV for each set of corresponding p and \mathbf{V} values Is the product pV approximately constant throughout?
- Has Boyle's law been verified by the results of the experiment?

CHARLES' LAW

This law relates the VOLUME (V) and the TEMPERATURE (T) of a gas at CONSTANT PRESSURE and states that

The VOLUME (V) of a fixed mass of gas at constant pressure is directly proportional to its ASOLUTE (KELVIN) TEMPERATURE (T).

Stated mathematically :

PRESSURE LAW
This law relates the PRESSURE (p) and the TEMPERATURE (T) of a gas at CONSTANT VOLUME and states that :

The PRESSURE (p) of a fixed mass of gas at constant volume is directly proportional to its ABSOLUTE (KELVIN) TEMPERATURE (T).

Stated mathematically :

From which :

- An IDEAL GAS is one which obeys the GAS LAWS exactly and for which is subject to the assumptions of the KINETIC THEORY OF GASES.
- So for a ideal gas each of the following applies :
- $\quad p V=$ constant (at constant temperature)

V/T = constant (at constant pressure)

From which we have that :

$$
\frac{p V}{T}=\text { constant }
$$

The magnitude of the constant depends on the mass of gas being considered.

For 1 MOLE of gas, the constant is the UNIVERSAL MOLAR GAS CONSTANT $(R)=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{1}$

$$
\text { So for } 1 \text { MOLE of gas: } \quad \frac{P V}{T}=R
$$

$$
\text { So: } \quad p V=R T
$$

For n MOLES of gas :

This is known as THE IDEAL GAS EQUATION.

- This form of the ideal gas equation is useful for problems set in
terms of molecules rather than moles of gas.
- The ideal gas equation may also be expressed in terms of the BOLTZMANN CONSTANT (k) which is the gas constant per molecule (i.e. $k=R / N_{A}$).

$$
k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~kg}^{-1}
$$

Since $k=R / N_{A}$ then $R=k N_{A}$
Substituting for R in $p V=n R T$ gives $p V=n\left(k N_{A}\right) T$
But $n N_{A}=$ number of moles x number of molecules
of gas per mole
$=$ number of molecules in the gas (N)

\qquad

- For (n) moles of a gas of volume $\left(V_{1}\right)$ at a pressure $\left(p_{1}\right)$ and temperature (T_{1}):

$$
\begin{equation*}
\frac{p_{1} V_{1}}{T_{1}}=n R . \tag{1}
\end{equation*}
$$

For the same amount of gas (n moles) whose volume has changed to $\left(V_{2}\right)$ at a new pressure $\left(p_{2}\right)$ and temperature $\left(T_{2}\right)$:

$$
\begin{equation*}
\frac{p_{2} V_{2}}{T_{2}}=n R \tag{2}
\end{equation*}
$$

From (1) and (2) we have that :

$$
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}
$$

This is called the COMBINED GAS EQUATION.

- It is particularly useful for solving problems in which volume, pressure and temperature vary simultaneously.

It does not matter what units are used for p and V, so long as they are the same on both sides of the equation, but T MUST BE IN KELVINS (K).
) A fixed mass of gas has a volume of $3000 \mathrm{~cm}^{3}$ at a pressure of $1.0 \times 10^{5} \mathrm{~Pa}$. Calculate its volume when the pressure is increased to $2.5 \times 10^{6} \mathrm{~Pa}$ with the temperature remaining constant.
(b) A fixed mass of gas has a volume \mathbf{V} when the temperature is $127^{\circ} \mathrm{C}$. To what temperature must the gas be raised so that its volume increases to 2.75 V with the pressure remaining constant ?
(c) A fixed mass of gas has a volume of $0.02 \mathrm{~m}^{3}$ at a pressure of $2.02 \times 10^{5} \mathrm{~Pa}$ and a temperature of $44^{\circ} \mathrm{C}$. Calculate the new volume of the gas at standard temperature and pressure (i.e. $0^{\circ} \mathrm{C}$ And $1.01 \times 10^{5} \mathrm{~Pa}$).

A diver swims at a depth of 40 m where the temperature of the water is $4.0^{\circ} \mathrm{C}$. He inhales $1.2 \times 10^{-5} \mathrm{~m}^{3}$ of compressed air at a pressure of $7.0 \times 10^{5} \mathrm{~Pa}$ and suddenly sees something that panics Calculate the new volume of the air which he inhaled at 40 m , if the surface temperature and pressure is $20.0{ }^{\circ} \mathrm{C}$ and $1.01 \times 10^{5} \mathrm{~Pa}$ respectively.
(a) How many moles are there in 1.6 kg of oxygen if the molar mass of this gas is $32 \mathrm{~g} \mathrm{~mol}^{-1}$?
(b) Calculate the volume occupied by 1 mole of an ideal gas at a (The universal molar gas constant, $R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$).

UNIT G484	Module 2	4.3.4	Ideal Gases

SPEED OF GAS MOLECULES

6 A vehicle air bag inflates rapidly when an impact causes the production and release of a large quantity of nitrogen in a chemical reaction. In a test of an air bag, the bag inflates to a volume of $1.2 \mathrm{~m}^{3}$ and a pressure of 103 kPa at a final temperature of 280 K .

Calculate:
(a) The number of moles of gas in the bag.
(b) The initial pressure of the gas if it was released from a container of volume $5.6 \times 10^{-4} \mathrm{~m}^{3}$ at the same temperature.

From the graph it can be
seen that :
The molecules in a gas have a wide range of different speeds.

This is illustrated In the graph shown opposite In which NUMBER OF MOLECULES is plotted against MOLECULAR SPEED.

contains 6.02×10^{22} molecules.
(a) Calculate:
(i) The number of moles of gas contained in the sample.
(ii) The mass of the gas sample.
(iii) The volume occupied by the gas at a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$ and a temperature of $17^{\circ} \mathrm{C}$. (The Avogadro number, $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$).
(b) A sample of a different gas contains 1.204×10^{25} molecules. Calculate the volume occupied by this gas sample at a pressure of $2.02 \times 10^{6} \mathrm{~Pa}$ and a temperature of $100^{\circ} \mathrm{C}$.
(The Boltzmann constant, $\mathbf{k}=1.38 \times 10^{-28} \mathrm{~J} \mathrm{~kg}^{-1}$).

5 (a) Sketch a graph to show how the pressure of 2 moles of gas
(a) Sketch a graph to show how the pressure of 2 moles of gas
varies with temperature when the gas is heated from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in a sealed container of volume $0.050 \mathrm{~m}^{3}$.
(b) If the molar mass of the gas in (a) is $0.032 \mathrm{~kg} \mathrm{~mol}^{-1}$, calculate the density of the gas.
4 The molar mass of nitrogen is $0.028 \mathrm{~kg} \mathrm{~mol}^{-1}$. A sample of the gas (a) Cal

- Few molecules have either very low or very high speed and none have zero speed (i.e. are stationary).
- The distribution of gas molecular speed depends on temperature. As the gas temperature increases, the distribution curve becomes flatter and broader.

The higher the temperature, the greater is the proportion of high-speed molecules and the smaller is the proportion of low-speed molecules. temperature. As the gas temperature increases,

$$
\begin{aligned}
& \text { The MEAN SPEED }(\bar{c}) \text { is the average value } \\
& \text { of the speeds of all the molecules. }
\end{aligned}
$$ (

UNIT G484	Module 2	4.3.4	Ideal Gases

2 (a) The equation of state of an ideal gas is $\mathrm{pV}=\mathrm{nRT}$. Explain why the temperature must be measured in Kelvin.
(b) A meteorological balloon rises through the atmosphere until it expands to a volume of $1.0 \times 10^{6} \mathrm{~m}^{3}$, where the pressure is $1.0 \times 10^{3} \mathrm{~Pa}$. The temperature also falls from $17^{\circ} \mathrm{C}$ to $-43^{\circ} \mathrm{C}$.

- The pressure of the atmosphere at the Earth's surface $=1.0 \times 10^{5} \mathrm{~Pa}$.
Show that the volume of the balloon at take off is about $1.3 \times 10^{4} \mathrm{~m}^{3}$.
(c) The balloon is filled with helium gas of molar mass
$4.0 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$ at $17^{\circ} \mathrm{C}$ at a pressure of $1.0 \times 10^{5} \mathrm{~Pa}$.
Calculate : (i) The number of moles of gas in the balloon.
(ii) The mass of gas in the balloon.
(d) The internal energy of the helium gas is equal to the random kinetic energy of all of its molecules. When the balloon is filled at ground level at a temperature of $17^{\circ} \mathrm{C}$ the internal energy is 1900 MJ. Estimate the internal energy of the helium when the balloon has risen to a height where the temperature is $-43^{\circ} \mathrm{C}$.
(e) The upward force on the balloon at the Earth's surface is $1.3 \times 10^{5} \mathrm{~N}$. The initial acceleration of the balloon is $27 \mathrm{~m} \mathrm{~s}^{-2}$ and its total mass is \mathbf{M}.
(i) On the diagram opposite draw and label arrows to represent the forces acting on the balloon immediately after take off.

(ii) Calculate the value of M.
(OCR A2 Physics - Module 2824 - June 2005)
(b) A bicycle tyre has a volume of $2.1 \times 10^{-3} \mathrm{~m}^{3}$. On a day when the temperature is $15^{\circ} \mathrm{C}$ the pressure of the air in the tyre is
280 kPa . Assume that the air behaves as an ideal gas.
(i) Calculate the number of moles (n) of air in the tyre.
(ii) The bicycle is ridden vigorously so that the tyres warm up. The pressure in the tyre rises to 290 kPa . Calculate the new temperature of the air in the tyre. Assume that no air has leaked from the tyre and that the volume is constant.
(iii) Calculate, for the air in the tyre, the ratio:

Internal energy at the higher temperature
Internal energy at $15^{\circ} \mathrm{C}$
(OCR A2 Physics - Module 2824 - January 2007)
4 A light bulb contains $6.0 \times 10^{-5} \mathrm{~m}^{3}$ of the inert gas, argon. The gas pressure in the bulb is 16 kPa when the bulb is unlit and the gas temperature is $20^{\circ} \mathrm{C}$. The molar mass of argon is $0.040 \mathrm{~kg} \mathrm{~mol}^{-1}$ and the molar gas constant R is $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
(a) (i) Calculate the number of moles of argon gas in the bulb.
(ii) Calculate the number of argon atoms in the bulb. Argon consists of single atoms that do not combine with each other.
(iii) Calculate the mean speed of an argon atom if its kinetic energy at $20^{\circ} \mathrm{C}$ is $5.5 \times 10^{-21} \mathrm{~J}$.
(b) The temperature of the gas in the bulb increases to a maximum of $120^{\circ} \mathrm{C}$ once it has been lit for some time. Calculate :
(i) The gas pressure at this new temperature.
(ii) The new mean translational kinetic energy of an argon atom at this temperature.

