

• When **p** is plotted against **V**, a curve called a **rectangular hyperbola** is obtained and when **p** is plotted against **1/V**, the result is a **straightline** graph.

By investigating a fixed mass of gas at **different temperatures**, a series of graphs is obtained. Each of the curves or lines is called an **ISOTHERMAL** (since the plotted values are all for the same temperature).

Plotting **pV** against **p** Yields horizontal lines for each different temperature as shown in the diagram opposite.

- The apparatus shown above may be used to investigate the relation between the **pressure** and **volume** of a fixed mass of gas **at constant temperature**.
- A long glass tube which is closed at one end and mounted against a volume scale, contains the fixed mass of air under test. The pressure on the air column can be varied using a foot pump which forces oil from the reservoir up the tube and so compresses the air above it. The pressure gauge measures the pressure in pascal and the volume of the air column is read directly from the scale beneath the tube.
- The pump is first used to compress the air to its smallest possible volume and the tap is closed. In order to ensure that the oil level has stabilised and that the air is at room temperature, the **pressure (p)** and **volume (V)** readings are not taken for a couple of minutes. The apparatus is then slowly vented by opening the tap slightly and then closing it again. Once again the corresponding pressure and volume readings are taken after a short time has elapsed. This process is repeated several times so as to obtain a set of corresponding **p** and **V** values.

FXA @ 2008

	eal Gases	Id	4.3.4	: 2	Module	T G484
CHA This lau CONST					SULTS	RE
	pV/Nm	/V/cm ⁻³	/cm ³ 1/	VOLUME,V	SSURE,p/x 10 ⁵ Pa	PRES
PR. This la CONS	ght line ? If so, en p and 1/V ?	est-fit strai iship betwee	Is it a be he relation) ANALYSIS against 1/V. Il you about t	LCULATIONS AN Plot a graph of p what does this te	CA
	10 ⁻⁶ and then ing p and V values. ut ?	ltiplying by correspond nt throughou	o m ³ by mu each set of ely consta l	ne readings to duct pV for e (approximation	Convert the volum calculate the prod Is the product p V	•

CHARLES' LAW

This law relates the VOLUME (V) and the TEMPERATURE (T) of a gas at CONSTANT PRESSURE and states that :

3

UNIT 6484	Module 2	4.3.4	Ideal Gases	ŀ	PRACTICE QUESTIONS (1) 6
•	THE COMBINED G For (n) moles of a gas of voi temperature (T ₁) :	iume (V1)	TION It a pressure (p 1) and	1	(a) A fixed mass of gas has a volume of 3000 cm ³ at a pressure of 1.0 × 10 ⁵ Pa. Calculate its volume when the pressure is increased to 2.5 × 10 ⁶ Pa with the temperature remaining constant.
•	$\frac{p_1V_1}{T_1} = nR \dots (1)$ • For the same amount of gas (n moles) whose volume has changed to (V ₂) at a new pressure (p ₂) and temperature (T ₂): $\frac{p_2V_2}{T_2} = nR \dots (2)$ From (1) and (2) we have that : $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$				(b) A fixed mass of gas has a volume V when the temperature is 127°C. To what temperature must the gas be raised so that its volume increases to 2.75 V with the pressure remaining constant ?
					(c) A fixed mass of gas has a volume of 0.02 m ³ at a pressure of 2.02 × 10 ⁵ Pa and a temperature of 44°C. Calculate the new volume of the gas at standard temperature and pressure (i.e. 0°C And 1.01 × 10 ⁵ Pa).
					A diver swims at a depth of 40 m where the temperature of the water is 4.0 °C. He inhales $1.2 \times 10^{-5} \text{ m}^3$ of compressed air at a pressure of 7.0 $\times 10^5$ Pa and suddenly sees something that panics him into rising to the surface very rapidly without exhaling.
•	This is called the <u>COMBINE</u> It is particularly useful for :	This is called the <u>COMBINED GAS EQUATION.</u> It is particularly useful for solving problems in which volume,			Calculate the new volume of the air which he inhaled at 40 m , if the surface temperature and pressure is 20.0 $^{\circ}C$ and 1.01 $\times 10^{5}$ Pa respectively.
•	pressure and temperature va It does not matter what unit they are the same on both . BE IN KELVINS (K) .	try simultai ts are usea sides of th	reously. ' for p and V , so long as ' re equation , but T MUST	3	 (a) How many moles are there in 1.6 kg of oxygen if the molar mass of this gas is 32 g mol⁻¹? (b) Calculate the volume occupied by 1 mole of an ideal gas at a temperature of 0°C and a pressure of 1.013 x10⁵ Pa.
					(The universal molar gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$).
					FXA © 2008

UNIT 6484	Module 2	4.3.4	Ideal Gases	
4 The mole contains (a) Calcu (i) (ii	ar mass of nitrogen is 0. 6.02 × 10 ²² molecules. Ilate : The number of moles of) The mass of the gas so i) The volume occupied b 1.01 × 10 ⁵ Pa and a tr	.028 kg mol of gas contai ample. oy the gas at emperature o	¹ . A sample of the gas ned in the sample. a pressure of of 17°C .	SPEED OF GAS MOLECULES The molecules in a gas have a wide range of different speeds. This is illustrated In the graph shown opposite In which NUMBER OF MOLECULES is plotted against MOLECULAR SPEED.
(b) A sar Calcu of 2 . (The	(The Avogadro number nple of a different gas late the volume occupied 02 × 10⁶ Pa and a temp Boltzmann constant, k =	, $N_A = 6.02$ contains 1.2 d by this gas perature of 1 1.38 x 10	× 10 ²³ mol ⁻¹). 04 × 10 ²⁵ molecules. sample at a pressure 00°C. ²⁸ J kg ⁻¹).	 Molecular Spee From the graph it can be seen that : Few molecules have either very low or very high speed and none have zero speed (i.e. are stationary).
5 (a) Sket varie 100° (b) If th the d	ch a graph to show how s with temperature whe C in a sealed container o ne molar mass of the gas lensity of the gas.	the pressure n the gas is of volume 0.(; in (a) is 0.0	e of 2 moles of gas heated from 20°C to 050 m³. 32 kg mol ⁻¹ , calculate	 The distribution of gas molecular speed depends on temperature. As the gas temperature increases, the distribution curve becomes flatter and broader. The higher the temperature, the greater is the proportion of high-speed molecules and the smaller is the proportion of low-speed molecules.
6 A vehicle producti reaction 1.2 m ³ c Calculate	e air bag inflates rapidly on and release of a larg . In a test of an air bag and a pressure of 103 kf e: (a) The number of r	when an imp e quantity of , the bag inf Pa at a final t noles of gas	pact causes the nitrogen in a chemical lates to a volume of emperature of 280 K . in the bag.	The <u>MEAN SPEED</u> (c) is the average value of the speeds of all the molecules.
	(b) The initial press from a container same temperatu	ure of the g of volume 5 re.	as if it was released . 6 × 10⁻⁴ m ³ at the	FXA @

UNIT 6484	Module 2	4.3.4	Ideal Gases				
	MOLECULAR KINETIC E	NERGY AND	TEMPERATURE				
Since temp must The	e the mean speed ($ar{c}$) of the n perature, the mean translation t also increase with temperatur derivation which follows will es	nolecules in a al kinetic ener re. stablish that	gas increases with rgy of the molecules :				
T	The <i>mean translational kinetic</i> s directly proportional to the	energy of a absolute ter	molecule of an ideal gas <i>nperature</i> of the gas.				
	The equation of state for (n) at a pressure (p) and an abso pV = nRT .	moles of an a	ideal gas of volume (V) at ure (T) is : . (1)				
	Using kinetic theory of gases, if the gas is made up of (N) molecules each of mass (m) and moving with a mean speed (\overline{c}) : $pV = \frac{1}{3} Nm\overline{c}^{2}$						
	Which may be expressed as : $^{2}/_{3} N(\frac{1}{2}m\overline{c}^{2}) =$	nRT					
	Therefore : $\frac{1}{2}m\overline{c}^2 =$ But N/n = The number of g	$\frac{3 \text{ n}}{2 \text{ N}} \text{RT} = \frac{3}{2}$	<u>B</u> _R_T 2 N/n s per mole = N₄.				
			AVOGADRO NUMBER				

UN	IT <i>G</i> 484	484Module 24.3.4Ideal Gases					(c) The total kinetic energy (i.e. the internal energy) 9		
•	PRACTIC	E QUESTIONS (2)					of the gas contained in the cylinder.		
1	1 Given that the molar mass of nitrogen is 0.028 kg mol ⁻¹ and that the Avogadro number (N_A) is 6.02 × 10 ²³ mol ⁻¹ , calculate :				¹ and that te :	1	 Molar mass of nitrogen M_m = 0.028 kg mol⁻¹. Molar gas constant, R = 8.31 J mol⁻¹ K⁻¹. Avogadro constant, N_A = 6.02 × 10²³ mol⁻¹ 		
	(a) (b)	The mass of a molecule of The kinetic energy of a	f a molecule of nitrogen.		• но/	NEWORK QUESTIONS			
	moving with a speed of 1500 m s^{-1} .						itate Boyle's law : (i) As a written statement .		
2	The mean	n translational kinetic ene	erov of an a	yyaen mala	ecule at		(ii) Expressed as a mathematical equation.		
2	20°C is found to be 7.5×10^{-21} J. Calculate:						(iii) Expressed in the form of a graph relating the quantities involved .		
	(a)	The mean speed of an o	xygen mole	cule.		(b) :	State the main assumptions of the kinetic theory of gases.		
	(b) (c)	The internal energy of a The mean translational	2.5 moles kinetic ene	of oxygen <u>o</u> e rgy of an o	jas at 20°C. oxygen	(c)	(i) Explain what is meant by an ideal gas.		
	•	molecule at a temperatur Molar mass of oxygen Avogadro number N₄	re of 200° (= 0.032 kg = 6 02 x 1	C. 1 mol ⁻¹ . 1 0²³ mol ⁻¹			(ii) Write down the ideal gas equation for (n) moles of gas and state what each quantity in the equation is as well as giving its unit.		
3	A culinde	r of volume 0.25 m ³ cont	tains nitros	en oas at a	brockurg	(d)	 (i) Define the mole. How is the mole related to the Avogadro constant (N_A) ? 		
5	of 1.5 x 10 ⁵ Pa and a temperature of 17°C. Assuming that the gas				; that the gas		(ii) What is the molar mass of a substance?		
	(a)	The number of moles of	² gas in the	cylinder.			(iii) How many moles are there in (M) kg of a substance of molar mass (M_m) kg mol⁻¹?		
	(b) The mean translational kinetic energy of a nitrogen molecule.					(e) i	(e) How is the mean translational kinetic energy of a molecule of an ideal gas related to the gas temperature . Give a written		
							statement and a relevant equation for this. FXA © 2008		

UNIT <i>G</i> 484		Module 2	4.3.4	Ideal Gases	3	(a) Explain what is meant by the internal energy of a gas. 10
2	(a) The a the t	equation of state of an ide emperature must be meas	al gas is ured in k	pV = nRT. Explain why celvin.		(b) A bicycle tyre has a volume of 2.1 × 10 ⁻³ m ³ . On a day when the temperature is 15°C the pressure of the air in the tyre is 280 kBc.
	(b) A me expar	teorological balloon rises nds to a volume of 1.0 × 1	through 1 0⁶ m³, v	the atmosphere until it vhere the pressure is		(i) Calculate the number of moles (n) of air in the tyre.
	1.0 ×	10³ Pa . The temperatur	re also fo	alls from 17°C to -43°C .		(ii) The bicycle is ridden vigorously so that the tyres warm up. The pressure in the tyre rises to 290 kPa . Calculate the
	•	The pressure of the a surface = 1.0×10^5 P	tmosphe 'a .	re at the Earth's		new temperature of the air in the tyre. Assume that no air has leaked from the tyre and that the volume is constant.
	5now 1.3 x	10^4 m^3 .	alloon at	TAKE OTT IS ADOUT		(iii) Calculate, for the air in the tyre, the ratio :
	(c) The t 4.0	balloon is filled with heliun < 10⁻³ kg mol⁻¹ at 17°C at	n gas of t a press	nolar mass ure of 1.0 × 10 ⁵ Pa.		Internal energy at the higher temperature Internal energy at 15°C (OCR A2 Physics - Module 2824 - January 2007)
	Calcul	ate : (i) The number of mo (ii) The mass of gas i	ples of g n the ba	as in the balloon. Iloon.	4	A light bulb contains $6.0 \times 10^{-5} \text{m}^3$ of the inert gas, argon. The gas pressure in the bulb is 16 kPa when the bulb is unlit and the gas
	(d) The i kinet	nternal energy of the heli tic energy of all of its mol	ium gas i: ecules. N	s equal to the random When the balloon is filled		temperature is 20°C . The molar mass of argon is 0.040 kg mol ⁻¹ and the molar gas constant R is 8.31 J mol ⁻¹ K ⁻¹ .
	at gr 1 900	ound level at a temperatu D MJ. Estimate the inter	re of 17 r nal ene i	°C the internal energy is •gy of the helium when the		(a) (i) Calculate the number of moles of argon gas in the bulb.
	ballo	on has risen to a height w	here the	temperature is -43°C.		(ii) Calculate the number of argon atoms in the bulb. Argon consists of single atoms that do not combine with each other.
	(e) The u the E The i	upward force on the balloc arth's surface is 1.3 ×10 nitial acceleration of the l	on at ⁵ N. balloon			(iii) Calculate the mean speed of an argon atom if its kinetic energy at 20°C is 5.5 × 10⁻²¹ J .
	ıs 27	m s - and its total mass i.	s M. draw			(b) The temperature of the gas in the bulb increases to a maximum of 120°C once it has been lit for some time. Calculate:
	()	and label arrows to repr the forces acting on the b immediately after take of	esent Dalloon			(i) The gas pressure at this new temperature.
	(ii)) Calculate the value of M .				(ii) The new mean translational kinetic energy of an argon atom at this temperature.

(OCR A2 Physics - Module 2824 - June 2005)

FXA © 2008